Michigan Roads: Where Economics and Environment Meet

The business of winter maintenance rests in the very capable hands of people like you.

As the industry evolves, it is important for you to stay current in your knowledge and understanding of the issues that drive winter maintenance. We are beginning to understand the serious corrosion and environmental harm caused by the deicing materials used in winter maintenance. With the advent of better equiment and alternative deicers, we have great opportunity for cost savings as well for a lessening of the environmental impacts of winter maintenance.

By following the BMPs discussed in this manual, you can both meet the needs of your customers and protect the freshwater systems that surround your roads.

The use of more sophisticated deicing materials and equipment with more flexibility may have higher cost assosiated with them up-front. These costs can be recovered, however, by reducing your salt usage and minimizing the need for some of your postwinter maintenace activities such as curb sweeping and catchbasin cleaning. These chemicals and equipment can also help improve your level of service.

By demonstrating a strong return on investment (ROI), you will increase public support for your efforts. By taking time to educate the public on your winter maintenance policy and methods, you can foster a positive and cooperative relationship with them.

In order to help public agencies be careful stewards of taxpayer dollars, the Clear Roads pooled study created an interactive tool kit that helps agencies calculate the cost/benefit ratio of selected winter maintenance technologies. This tool kit can be found on the Clear Roads website at <u>www.clearroads.org</u>.

There are other costs associated with the use of deicing materials that commonly are not included in most organizations' ROI assessment. These uncounted costs include repairing damage to infrastructure. Using less salt on the roadways can save all taxpayers money by reducing the corrosion of maintenance equipment, personal vehicles and bridges, and by limiting the degradation of road surfaces.

Estimates of damage to infrastructure, automobiles, vegetation, human health and the environment from deicing materials range from \$803 to \$3300 per ton of road salt used, according to several research reports (see figure 1 and citations below).

The True Cost of Road Salt: It Really Adds Up!

•	Item	•	Cost
•	Material (salt) \$55/ton ¹	•	\$55/ton
•	Labor and Equipment to apply salt ²	•	\$100/ton
•	Damage from use of salt ³	•	\$800 - \$3300/ton
-	Total cost:	-	\$955 - \$3455/ton

Figure 1: Estimates of Costs for Using Road Salt

In addition to having safe roads and reducing the immediate and long-term winter maintenance costs, your customers are also interested in protecting Michigan's lakes and rivers. As "The Great Lakes State," Michigan has an abundance of water bodies, with the Great Lakes and approximately 11,000 inland lakes, as well as streams and wetlands. These should be preserved

as the valuable and irreplaceable natural resources

that they are.

Figure 2: Great Lakes Drainage Area

Lake Michigan and the other Great Lakes represent 20 percent of the world's fresh surface water. The Great Lakes, along with the rivers, channels, and lesser lakes feeding or draining them, constitute the largest surface freshwater system on Earth!

Michigan residents rely on this freshwater for personal, agricultural and business uses. Tourism is important to the state of Michigan as it is one of our leading industries. Our fresh, clean lakes and rivers attract many visitors to the state and contribute to our quality of life in many ways.

Unfortunately, chloride from road salt is entering the environment and threatening the health of Michigan's fresh water ecosystems. Salts, such as those used in winter maintenance activities, dissolve and move downhill with water (snow melt or rain) to the nearest lake, river or pond. Chloride does not settle out or disappear. Chloride stays in our water cycle virtually forever. It only takes about 1 teaspoon of rock salt to contaminate 5 gallons of water to the federal chronic chloride standard of 230mg/l.¹

Sources: MDOT (2013), Vitaliano (1977) and Murray et. al (1992) as cited in a draft, "The Real Cost of Road Salt Use for Winter Maintenance in the Twin Cities Metropolitan Area of Minnesota," prepared for the Minnesota Pollution Control Agency by Carolyn Dindorf and Connie Fortin, January 21, 2013.

There is an overall trend of higher chloride concentrations in water bodies located in the southern region of Michigan. The highest concentrations are around the larger cities and most heavily-traveled roadways.² The United States Environmental Protection Agency documented 29 incidences of Michigan groundwater contamination from salt or salt/sand³ in addition to effects on surface waters.

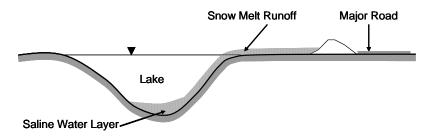


Figure 3: Lake Stratification Due to Saltwater Runoff

In addition to causing aquatic toxicity, salt water is heavier than freshwater and sinks to the bottom of lakes. This can eventually cause stratification of the lake and loss of lake turnover.⁴

A recent study on the negative impacts from road salt runoff concluded that "reduction in usage appears to be the only effective road-salt-runoff management strategy."⁵ You, as a winter maintenance professional, are uniquely positioned to safeguard the freshwater resources of Michigan by using less salt. The information in this manual provides many suggestions on how to accomplish this.